Por Emma Cavan
O importante papel de pequenas (<5mm) plantas e animais no oceano não é tão conhecido pelo público como o dos animais carismáticos, que a mídia prefere chamar de “fofinhos” (“cuddly”, em inglês), como golfinhos e baleias. São chamados de plâncton os organismos (tanto plantas como animais) que não conseguem nadar contra as correntes, seu tamanho varia desde algas microscópicas à grandes águas-vivas.
Minha pesquisa é focada na bomba biológica de carbono, descrito por Yonara Garcia em um post prévio “A fertilização dos oceanos e as mudanças climáticas”, de maio de 2016. A bomba biológica de carbono descreve como o fitoplâncton (plantas) e o zooplâncton (animais) sequestram dióxido de carbono da atmosfera para o oceano profundo. Meu interesse é desvendar como esses organismos transportam carbono orgânico (em forma de partículas) na camada superior do oceano (primeiros 500 m).
![](https://static.wixstatic.com/media/411df4_03f141eb551a4ded97a7d92257a1f7f1~mv2.png/v1/fill/w_212,h_318,al_c,q_85,enc_auto/411df4_03f141eb551a4ded97a7d92257a1f7f1~mv2.png)
O zooplâncton varia desde pequenos crustáceos (parecidos com camarões) até organismos muito maiores, como salpas e águas-vivas. Vou me concentrar aqui apenas nos crustáceos. Dentre eles está o krill, um grupo de organismos zooplanctônicos muito conhecido. Eles são considerados grandes (2-5 mm) para seu grupo e são encontrados abundantemente no Oceano Austral, onde são presas de grandes baleias como as jubarte. O zooplâncton influencia na quantidade de carbono orgânico (originalmente fotossintetizado pelo fitoplâncton na superfície dos oceanos) que atinge o mar profundo, uma vez que organismos do plâncton:
1- Respiram o carbono inorgânico
2- Ingerem o carbono orgânico e liberam uma parte deste em forma de pelotas fecais (cocô de plâncton).
3- Quebram partículas em pedaços menores
Para complicar ainda mais o processo, o zooplâncton pode migrar verticalmente centenas de metros por dia. Então podem se alimentar na superfície à noite e depois descer a maiores profundidades para liberar pelotas fecais, aumentando o volume de carbono que chega ao oceano profundo e fica longe da atmosfera. Por essa razão, o zooplâncton é particularmente difícil de representar em modelos biogeoquímicos! Tenho ido ao mar no oceano Antártico l e no Pacífico equatorial buscando descobrir como o zooplâncton age na transferência de carbono orgânico para o mar profundo.
Oceano Antártico
![](https://static.wixstatic.com/media/411df4_1bf9047b124149189f76cafdb1be674c~mv2.png/v1/fill/w_298,h_200,al_c,q_85,enc_auto/411df4_1bf9047b124149189f76cafdb1be674c~mv2.png)
Trabalhar neste ambiente é uma experiência fantástica. Deve ser um dos lugares mais bonitos do planeta. Ficávamos cercados de muitos pinguins todos os dias! Voltando à ciência… como eu disse, no oceano Antártico há um grande número de crustáceos pertencentes ao zooplâncton, como krill e copépodes. Eles são dominantes nas águas gélidas em torno da Antártica, mas sua ocorrência é muito fragmentada, como manchas (não são espalhados homogeneamente).
![](https://static.wixstatic.com/media/411df4_df63f1a27a414cfbadee2e27b3b915dc~mv2.jpg/v1/fill/w_169,h_146,al_c,q_80,enc_auto/411df4_df63f1a27a414cfbadee2e27b3b915dc~mv2.jpg)
Lá eu coletei partículas orgânicas que estavam afundando (cheias de carbono), em sua maioria pelotas fecais do zooplâncton (e não detritos fitoplanctônicos). Isso sugere que a maior parte do carbono orgânico que chega no fundo oceânico é via zooplâncton, que se alimenta de fitoplâncton e libera pelotas fecais. Notou-se que a quantidade de zooplâncton afeta o número de partículas que afundam a partir da superfície do oceano. Além disso, se o zooplâncton alimenta-se de fitoplâncton fresco (pelotas fecais marrons), de detritos ou de suas próprias fezes (pelotas fecais brancas – e sim, eles comem seu próprio cocô!), isso afeta quão eficientemente o carbono orgânico chega ao oceano profundo! Então, essas criaturinhas têm um papel importante aqui, na transferência de carbono orgânico da superfície do mar para o fundo.
Pacífico equatorial
Trabalhar aqui foi muito diferente do que trabalhar no Oceano austral. É um ambiente muito quente e quase não vi nuvens durante todo o cruzeiro. Estávamos trabalhando na costa pacífica da Guatemala. Há muito menos vida marinha aqui, mas eu pude ver um monte de tartarugas e até um tubarão raposa!
![](https://static.wixstatic.com/media/411df4_a77a751d36254208a81b62ab508e8826~mv2.png/v1/fill/w_980,h_551,al_c,q_90,usm_0.66_1.00_0.01,enc_auto/411df4_a77a751d36254208a81b62ab508e8826~mv2.png)
Comparado ao oceano Antártico l, o Pacífico equatorial é muito estável, com poucas variações sazonais. Mas, ao mesmo tempo, entre 100-1000 metros de profundidade, as baixas concentrações de oxigênio tornam-se um obstáculo, o que faz com que os organismos fiquem sem oxigênio suficiente nessas profundidades. Zonas de oxigênio mínimo (ZOM) são comuns no planeta, particularmente perto de costas como a do Peru e a costa oeste da África. Muitos estudos mostram que, nas ZOM, maiores proporções de carbono orgânico atingem o fundo, quando comparadas ao resto do mundo. Mas a razão para isso ainda é desconhecida, então fui ao mar para tentar descobrir.
Há duas razões principais que fazem com que o carbono orgânico não atinja o oceano profundo:
1- Ele é consumido e respirado pelo zooplâncton
2 – ou é hidrolisado por bactérias
![](https://static.wixstatic.com/media/411df4_166fd3a92c9c477d84b27146dc0d74f7~mv2.jpg/v1/fill/w_362,h_482,al_c,q_80,enc_auto/411df4_166fd3a92c9c477d84b27146dc0d74f7~mv2.jpg)
Então eu quis testar se a remineralização bacteriana (o processo de converter carbono orgânico de volta à carbono inorgânico, como dióxido de carbono) é reduzido em ZOMs devido ao limitado metabolismo bacteriano em zonas de baixa concentração de oxigênio. Para tanto, medi a taxa de respiração de micro-organismos em partículas, e o resultado mostrou que estes são muito bem adaptados a lidar com as condições de pouco oxigênio e são responsáveis pela maior parte da degradação de carbono orgânico!
Isso mostrou que é provável que uma redução na respiração zooplanctônica e o processamento de partículas na ZOM devem ser os porquês do alto depósito de carbono orgânico ao fundo oceânico. Essa é uma hipótese razoável, já que estudos mostraram que a abundância de zooplâncton é baixa em ZOMs e que seu metabolismo é bem reduzido. O ciclo de vida de bactérias é bem mais curto do que o do zooplâncton, então elas podem se desenvolver muito mais rápido em condições desafiadoras. Então, no Pacífico equatorial, a ausência de zooplâncton significa que mais carbono chega ao oceano profundo e não é devolvido à atmosfera.
Resumindo, o zooplâncton têm uma relação complicada com o carbono no oceano. A presença ou ausência de ambos pode aumentar a quantidade de carbono que chega ao oceano profundo, dependendo somente de qual ecossistema oceânico eles fazem parte. É por isso que é complicado modelar os efeitos do zooplâncton no ciclo de carbono e são necessárias mais pesquisas para entender melhor como isso acontece. Mas devemos nos lembrar que os animais pequeninos influenciam, e muito, na quantidade de carbono que existe na atmosfera. Quem diria?
Sobre Emma:
Emma é uma bióloga marinha que tornou-se oceanógrafa biológica (o que significa, basicamente, ser uma bióloga marinha focada em pequenos organismos!). Cresceu na costa sul da Inglaterra e sua graduação e doutorado deu-se no Centro Nacional de Oceanografia da Universidade de Southampton. Acabou recentemente seu doutorado e quer continuar na academia, fazendo pesquisas. Emma se interessa muito em conectar ciência e política, passou 3 meses trabalhando no centro de ciências políticas na Royal Society em Londres. Fora o lado científico, Emma gosta de viajar sempre que possível e tem sido capaz de fazê-lo tanto para lazer quanto para trabalho. Também adora passear de caiaque, acampar, ler, cochilar e socializar. Siga-a no twitter (@emma_cavan) ou visite
Comments